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Abstract. The theory of vector bundle representations of Lie groups G is developed. 
Induced and locally operating linear representations of G are shown to be generated by 
vector bundle representations, and gauge equivalence of locally operating linear rep- 
resentations is shown to correspond to equivalence of vector bundle representations. It 
is pointed out that every vector bundle representation is equivalent to an induced one. 
Some applications to the quantum systems associated with monopole and instanton gauge 
field configurations are also discussed. 

1. Introduction 

In  a series of papers Hoogland (1976, 1977,1978) pointed out that the representations 
of groups of transformations of a space-time which are relevant for quantum mechanics 
are those christened by him as locally operating representations. Moreover, he has 
shown that the concept of equivalence of representations must be modified to take 
into account the local character of these representations, which leads to the new 
concept of local (gauge) equivalence. 

The aim of this paper is to give an intrinsic geometric formulation of such 
representations and their gauge equivalence that generalises the theory of induced 
representations. In this formulation the (linear) locally operating representations are 
described in terms of vector bundle representations. By developing the theory of 
vector bundle representations we generalise Hoogland’s concept of locally operating 
(linear) representations when the corresponding vector bundle is not trivial. Vector 
bundle representations have already been used in quantum theory by Sen (1975, 
1978) in a different context. Our main results (00 2,3)  ensure that any vector bundle 
representation is equivalent to an induced one, and that the equivalence of vector 
bundle representations is related to the equivalence of the corresponding induced 
ones. Some new applications to the monopole, instanton and the physics of two 
identical particles are given in 0 4. The framework of vector bundle representations 
that we develop in this paper allows us to deal in a similar way with locally operating 
projective representations which will be carried out in a subsequent paper. 

@ 1983 The Institute of Physics 1603 
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2. Locally operating representations of transformation groups 

Let G be a connected Lie group acting transitively on the left on a manifold M. 
Following Hoogland (1976, 1977, 1978), we will call (linear) locally operating rep- 
resentations of G the (linear) representations of G which operate locally on a space 
S o f  C"-valued functions defined on M,  according to the following law: 

L u ( g ) F ( g x )  = A h  x ) F ( x )  (2.1) 

where A is a matrix valued function A : G x M + GL(m, C) verifying the composition 
law 

A ( g i ,  g 2 ~ ) A ( g ~ ,  X ) = A ( g i g a  (2.2) 

The matrix A is called the gauge matrix. 
When M is a physical space-time these representations are relevant because they 

preserve locality in M. For instance, covariant representations of PoincarC-like groups 
are but particular examples of such representations, where A does not depend on x .  

The natural concept of equivalence of locally operating representations is the 
so-called gauge equivalence: two locally operating representations of G, Lu and Lu', 
are said to be gauge equivalent if there is an invertible transformation T acting locally 
in 9 (i.e. ( T F ) ( x ) = S ( x ) F ( x ) ,  with S being a function S : M + G L ( m ,  e)), such that 
V g  E G, 

Lu'(g) = m ( g ) T - ' .  (2.3) 

A ' k ,  x )  = S ( g x ) A ( g ,  x ) S - ' ( x ) .  (2.4) 

Let x o  be an arbitrary but fixed point of M and G,, the corresponding isotopy 
group. Let us suppose that the principal fibre bundle G(M,  Gxo) admits a global 
section s. Then the representations of G induced from those of G,,, when expressed 
in terms of s (see e.g. Simms 1968), give rise to locally operating representations of 
G as was pointed out by Cariiiena e t  a1 (1982); in that paper it was also claimed that 
any locally operating representation of G is gauge equivalent to some of these induced 
representations. The proof of this claim is given by the following theorem. 

The corresponding gauge matrices will be related by 

T h e o r e m  1 .  Let Lu be the locally operating representation of G in 9 given by (2.1). 
Then the map I; : G,, + GL(m, C) given by Z ( y )  = A ( y ,  x o )  defines a linear representa- 
tion of G,, and the representation of G induced from I;, when expressed in terms of 
the global section s, is a locally operating representation of G gauge-equivalent to Lu. 

Proof. Let s be a normalised global section of the principal fibre bundle G(M, G,,), 
i.e. s ( x ) x o  = x ,  Vx E M  and s ( x 0 )  is the identity of G. Let us now consider the action 
of G on the functions of M in @" which is associated to the representation of G 
induced from C by making use of the trivialisation of G(M, G,,) provided by the 
section s. Such an action defines a locally operating representation whose gauge matrix 
is given by 

(2.5) 
If we take into account the composition law of such gauge matrices we can write 

A ' k ,  X )  = U s - ' ( g x ) g s ( x ) )  = A ( S - ' ( g x ) g s  ( x ) ,  XO). 

A ' ( g ,  x )  = A ( s - ' ( g x ) ,  g x ) A ( g ,  x ) A ( s ( x ) ,  XO) 
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and therefore the functions S(X) = A(s-'(x), X )  = A-'(s(x), xo) allow us to define a 
gauge equivalence between % and the representation of G induced from E. 

Notice that the section s determines a map y :  G + G,,, by the factorisation g = 
s (gxo)y (g ) .  When the gauge matrix A satisfies A(g, xo) = A ( y ( g ) ,  XO), it is said to be 
xo-centred (with respect to the section s). From the proof of theorem 1 it follows 
that a locally operating representation of G with an xo-centred gauge matrix (with 
respect to the section s)  coincides with the expression of the representation of G 
induced from the representation of G,, given by E ( h )  = A ( h ,  XO) if the trivialisation 
associated to s is used, because s(x )  = 1. 

However, there are locally operating realisations of groups which are non-centred 
with respect to any section, and therefore the concept of locally operating representa- 
tion is more general than that of induced representation. On the other hand, induced 
representations of groups have been formulated in an intrinsic framework by means 
of the natural action of G on the corresponding associated fibre bundle, with no use 
of sections (Bott 1965, Simms 1968). In the general case, a (continuous) global section 
does not exist (see e.g. Boya et a1 1974, and references therein). Hence we would 
look for a similar intrinsic formulation of locally operating representations which does 
not make use of global sections and where topological features which were deliberately 
forgotten in Hoogland's papers are taken into account. Such topological aspects have 
been shown to be physically relevant in field theory (monopoles, instantons etc). The 
appropriate geometrical setting for such a formulation is given in 0 3. 

3. Vector bundle representations of G 

Let E ( X ,  rE, C") denote a differentiable vector bundle with total space E, base space 
X ,  projection rE and typical fibre C". We recall that a morphism of the vector bundle 
E ( X ,  rE, C") in the vector bundle E ' ( X ' ,  V E , ,  e") is a fibre preserving map @ : E  + E ' ,  
such that the restriction of @ to the fibre F, over x E X  is a linear map for any x E X .  
The corresponding map @X : X + X' is defined by T E ~  0 @ = @X 0 rE. When X = X '  
and @X = idx, it will be called an X-morphism. If Q, is invertible, it is said to be an 
isomorphism. In the particular case E' = E, an invertible morphism is an automorphism 
and if besides this, ax = idx, it is called an X-automorphism. The set of automorphisms 
of E will be denoted Aut E. 

Definition 1. Let E(X,  r ~ ,  C " )  be a vector bundle and G a Lie group. A vector 
bundle representation of G on E is a map a : G + Aut E such that 

(i) ( g l  g d  = (gda ( g d ,  
(ii) the map CU ; G X E +E,  defined by E ( g ,  U )  = (Y (g )u ,  is differentiable. 

A left action by automorphisms of a Lie group G on a principal fibre bundle 
P(X,  H )  is a differentiable action of G on P by the left such that g ( u h )  = (gu)h  for 
any g E G, u E P and h E H .  

Given a linear representation c: H +GL(m, C) of H, for any left action by 
automorphisms of G on the principal fibre bundle P(X,  H ) ,  there is a vector bundle 
representation of G in the vector bundle E ( X ,  r ~ ,  C")  associated to P through U, 
given by 

a(g) [u ,  03 = [g'u, V I ,  
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for any g E G, U E P and U E C". The bracket [U, U ]  means the equivalence class 
corresponding to ( U ,  ti) E P x C" in the associate vector bundle E. 

In the particular case of H being a closed Lie subgroup of G, we can consider the 
principal fibre bundle G(M,  H )  where M is the homogeneous space G / H  and the 
left action of G on itself by translations: the corresponding vector bundle representa- 
tion of G in the associated vector bundle E,(M, T,, C") is the vector bundle representa- 
tion of G induced by a (see e.g. Bott 1965). 

To every vector bundle representation a of G in E(X ,  T € ,  C"), we can associate 
a linear representation Q, of G in the linear space T(E)  of differentiable sections of 
E, as follows: 

[ % ( g ) 4 l ( g x )  = a ( g ) $ ( x ) .  (3.1) 

Definition 2. A vector bundle representation of (H, G )  in E ( M ,  rE, C") is a vector 
bu,ndle representation of G in E ( M ,  rE, e") such that aM is the usual action of G on 
M = G/H.  

The natural concept of equivalence between vector bundle representations of 
(H,  G )  in E ( M ,  TE,  C") is defined as follows. 

Definition 3. Two vector bundle representations a and p of (H,  G )  in E, and EP 
respectively are said to be equivalent if there is an M-isomorphism y of E, in ELI such 
that y 0 a ( g )  = p ( g )  0 y,  V g  E G. 

Theorem 2. If a and p are equivalent vector bundle representations of (H, G )  in E, 
and Ep respectively, the associated linear representations o%, and Qp are equivalent. 

ProoJ Let y be the M-isomorphism connecting a and /3. The the map T :  T(E,) + T(E,) 
given by (T~+b)(x) = y $ ( x )  establishes the equivalence between Q, and OUP.  

It is noteworthy that the induced vector bundle representations of (H, G )  exhaust, 
up to equivalence, all the vector bundle representations of (H, G ) .  

Theorem 3. Let a be a vector bundle representation of (H, G )  in E and xo = [ e ]  = H. 
The restriction of a ( g )  to H;' (xo),  a ( g ) ,  defines a representation U :  Gl,+ Aut ri' ( xo )  
of G,, = H. There exists an equivalence between a and the vector bundle representa- 
tion of (H, G )  induced by a. 

Proof. The fibre r Z ' ( x o )  is invariant under G,, and the restriction of a to H is a 
morphism m :  G,, + Aut TE' (xo) .  Now, let E,(M, HE,, TE' ( x o ) )  be the vector bundle 
associated to G(M,  H )  through the representation a ;  if p :  E, + E  is defined as 
p [g ,  U ]  = a ( g ) u ,  V g  E G, U E 7;' ( x ) ,  then ( p ,  idM) is an M-isomorphism intertwinning 
a with the natural action a ,  of G on E,, because 

a ( g ' ) p [ g ,  u I = a ( g ' g ) u  = p l g ' g ,  u I = p a C ( g ' ) k ,  U].  

The inverse map p - ' :  E +€, is defined by p - ' ( u )  = [g, a ( g - ' ) u ]  for any g such 
that ~ E ( ~ ) = g x o .  

This theorem permits us to reduce the problem of equivalence between vector 
bundle representations to that of equivalence between induced representations. 
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Theorem 4.  Two vector bundle representations a and p of (H, G )  in E, and E,, 
respectively, are equivalent if and only if the representations v, and up of H are 
equivalent. 

Proof. If a and p are equivalent, there exists an M-isomorphism p of E, in E, such 
that p (g)  0 1 ~  = p 0 a (g), Vg E G. Then p maps r;: ( X O )  onto r Z i  ( x o )  and the restriction 
of p to 17;- ( x o )  furnishes the equivalence between v, and U,. 

Conversely, if IT, and v, are equivalent, there is an isomorphism T of r ; : ( x o )  in 
r;: ( x o )  such that T 0 u, 0 T-’ = U,. Then we define the isomorphism T :  E,, +E,, 
between the vector bundles associated to G ( M , H )  through a, and up, as follows: 
.[g, v ]  = [g, Tu]. It is very easy to check that if a. and P o  denote the actions of G on 
E,, and Eve respectively, then po(g)  0 T = T 0 ao(g ) .  Therefore T is an equivalence 
between the vector bundle representations a. and P o  of (H, G). The equivalence 
between the vector bundle representations a and p follows from theorem 3 and 
transitivity of the equivalence relation. 

Therefore, equivalence of vector bundle representations is reduced to a simpler 

If the vector bundle E ( X ,  rE, C“) admits a global trivialisation 4 : X X C” +E,  we 
problem: that of equivalence of finite-dimensional representations of H. 

can write any section 4 E r ( E )  in terms of a function Flb : X + e”, by means of 

Then if a is a vector bundle representation of G in E,  we can define a matrix function 
A :  G x X + GL(m, C) as follows: 

Property (i) of definition 1 implies that A satisfies (2.2), and therefore the rep- 
resentation Vu of G defined by 

4 (gx ,  (ya (g)FG))(gx 1 = a (g)G ( x  1 (3.4) 

is a locally operating linear representation of G with gauge matrix A. This construction 
is just the reciprocal of that given in theorem 1. 

Let p be any vector bundle representation of G in E equivalent to a and S be 
the matrix function S :  M + G L ( m ,  C) defined by 

where y is the M- automorphism of E such that a (g) 0 y = y 0 p (g), Vg E G. It is easy 
to check that S establishes the gauge equivalence between Vu and VB. 

This shows that Hoogland’s concepts of linear locally operating representations 
and their gauge equivalence correspond to that of vector bundle representations and 
their equivalence, respectively, provided E admits a global trivialisation. Thus the 
theory of vector bundle representations and their equivalence permits us to generalise 
Hoogland’s concepts by taking into account the topological features. Moreover, this 
intrinsic approach points out the reason for considering gauge equivalence: the 
representations (3  -4) corresponding to the same vector bundle representation through 
two different trivialisations of E are gauge equivalent. 
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4. Applications 

Besides the standard applications to the theory of covariant and canonical representa- 
tions of the Poincare group (Asorey er a1 1982), and to the theory of symmetry 
breakdown (Sen 1975, 1978), there are many other physically interesting vector bundle 
representations of symmetry groups. We shall discuss three of them in this section. 

4.1. Wu- Yang monopole 

The Wu-Yang formulation of the Dirac magnetic monopole describes it by means of 
the Cartan-Killing connection w of the principal fibre bundle SU(2)(S2, U(1)) on the 
homogeneous space SU(2)/U(1) =S2 (Wu and Yang 1975). We recall that w is defined 
by the distribution of horizontal subspaces of the tangent bundle of SU(2) which are 
orthogonal to the U(l )  fibres with respect to the Cartan-Killing metric of SU(2). 

The quantum states of a charged particle moving in the magnetic field of a ( g  = 1) 
Dirac monopole are described by the cross sections of the linear bundle E(S', T ~ ,  C )  
associated to SU(2)(S2, U(1)) by the natural representation of U(1) in C. Now, in 
the bundle SU(2)(S2, U(1)) there is the left action by automorphisms of SU(2) given 
by left translation. This action induces (see 0 3) a vector bundle representation a of 
SU(2) in E and a representation 

The dynamics of this system are governed by the Hamiltonian H = -1/2A, (Asorey 
1982). Now, since w is invariant under the SU(2) left action, the representation am 
of SU(2) leaves the Hamiltonian H invariant, i.e. SU(2) is a dynamical symmetry of 
the quantum system. 

In a similar way, it can also be shown that the system corresponding to magnetic 
monopoles with higher topological charge is defined in U( 1) principal bundles which 
are inequivalent to SU(2)(S2, U(1)). Hence, the corresponding vector bundle rep- 
resentations of SU(2) are not gauge equivalent to a, which implies that they correspond 
to different physical systems (Asorey 1982). Indeed, the corresponding %a representa- 
tions are inequivalent even as linear representations because by the Frobenius 
reciprocity theorem the irreducible SU(2) sectors contained in the corresponding 
representations are different. 

is a representation of SU(2) induced from one of U(1). Next we 
consider two examples of vector bundle representations which are not induced from 
those of a proper subgroup. 

in the space of sections of E. 

In fact, 

4.2. Systems of two identical particles 

Let D = { ( x ,  y )  E R3 x R3;  x = y }  be the diagonal subset of R3 x R3. Any U(1) principal 
fibre bundle on R3 x R3 - D is isomorphic to the trivial one (W3 x W3 -Q) x U(1). In 
this principal bundle there are two different left actions a t ,  a2 of E 2  by automorphisms, 
given by 

a1(-1, (x, Y ,  e'?) = ( Y ,  x ,  eie) az(-l, ( x ,  y ,  e") = ( y ,  x ,  e+') 

respectively. They induce two vector bundle representations at, az of Z2 in the vector 
bundle E(R3 x R3 -D, TE, C )  associated to the trivial principal U(1) bundle (W3 x R - 
D)xU( l )  by the natural action of U(1) in C. As in Q 2, a1 and a2 define two 
representations a=,, of Z2 in the space r ( E )  of sections of E. 
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The quantum states of the system formed by two indistinguishable particles are 
described by the sections of T(E)  which are invariant under %a, or %a2 depending on 
whether the particles are bosons or fermions, respectively. The quantum dynamics 
behaviour of both kinds of systems is also invariant by %a, or Qa2, respectively. For 
this reason such representations are physically interesting. 

4.3. BPST instanton 

The instanton discovered by Belavin, Polyakov, Schwarz and Tyupkin (1975) is a 
self-dual connection w of a principal fibre bundle P ( S 4 ,  SU(2)) with Pontrjagin 
index 1.  

Let E ( S 4 ,  rE, Cz) be the vector bundle associated to P by the natural representation 
of SU(2) in C2. The cross sections of E describe the quantum states of a particle 
moving under the action of the instanton Yang-Mills fields. Now, P itself can be 
considered as the bundle associated to the spinor bundle Spin(5) (S4, Spin(4)) of S4 
by the homomorphism of groups 

A + :  Spin(4) = SU(2)+ x SU(2)- + SU(2)+ 

and w is the connection of P induced by such a homomorphism from the spin 
connections of the Levi-Civita connection in S4 (Atiyah eta1 1978). Thus, the elements 
of P can be considered as classes [g, a ]  of pairs of elements of Spin(5) and SU(2). 
Then we can define the left action of Spin(5) in P given by 

g l k ,  a1 = [gig, al. 
It is easy to show that this action is a left action of Spin(5) on P by automorphisms. 
Therefore it induces a vector bundle representation a of Spin(5) on E and a linear 
representation of 
Spin(5) points out the symmetry of the BPST system, which unifies the external 
symmetry SO(4) with the internal (gauge) one, SU(2). Finally, we remark that is 
not an induced representation of Spin(5). 

in the space of quantum states T(E).  This representation 
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